What it is and why it matters
Deep learning is a type of that trains a computer to perform human-like tasks, such as recognizing speech, identifying images or making predictions. Instead of organizing data to run through predefined equations, deep learning sets up basic parameters about the data and trains the computer to learn on its own by recognizing patterns using many layers of processing.
The evolution of deep learning
Deep learning is one of the foundations of artificial intelligence (AI), and the current interest in deep learning is due in part to the buzz surrounding AI. Deep learning techniques have improved the ability to classify, recognize, detect and describe – in one word, understand.
For example, deep learning is used to classify images, recognize speech, detect objects and describe content. Systems such as Siri and Cortana are powered, in part, by deep learning.
Several developments are now advancing deep learning:
- Algorithmic improvements have boosted the performance of deep learning methods.
- New machine learning approaches have improved accuracy of models.
- New classes of neural networks have been developed that fit well for applications like text translation and image classification.
- We have a lot more data available to build neural networks with many deep layers, including streaming data from the Internet of Things, textual data from social media, physicians notes and investigative transcripts.
- Computational advances of distributed cloud computing and graphics processing units have put incredible computing power at our disposal. This level of computing power is necessary to train deep algorithms.
At the same time, human-to-machine interfaces have evolved greatly as well. The mouse and the keyboard are being replaced with gesture, swipe, touch and natural language, ushering in a renewed interest in AI and deep learning.
The evolution of deep learning
Deep learning is one of the foundations of artificial intelligence (AI), and the current interest in deep learning is due in part to the buzz surrounding AI. Deep learning techniques have improved the ability to classify, recognize, detect and describe – in one word, understand.
For example, deep learning is used to classify images, recognize speech, detect objects and describe content. Systems such as Siri and Cortana are powered, in part, by deep learning.
Several developments are now advancing deep learning:
- Algorithmic improvements have boosted the performance of deep learning methods.
- New machine learning approaches have improved accuracy of models.
- New classes of neural networks have been developed that fit well for applications like text translation and image classification.
- We have a lot more data available to build neural networks with many deep layers, including streaming data from the Internet of Things, textual data from social media, physicians notes and investigative transcripts.
- Computational advances of distributed cloud computing and graphics processing units have put incredible computing power at our disposal. This level of computing power is necessary to train deep algorithms.
At the same time, human-to-machine interfaces have evolved greatly as well. The mouse and the keyboard are being replaced with gesture, swipe, touch and natural language, ushering in a renewed interest in AI and deep learning.
How is deep learning being used?
To the outside eye, deep learning may appear to be in a research phase as computer science researchers and data scientists continue to test its capabilities. However, deep learning has many practical applications that businesses are using today, and many more that will be used as research continues. Popular uses today include:
Speech recognition
Both the business and academic worlds have embraced deep learning for speech recognition. Xbox, Skype, Google Now and Apple’s Siri®, to name a few, are already employing deep learning technologies in their systems to recognize human speech and voice patterns.
Image recognition
One practical application of image recognition is automatic image captioning and scene description. This could be crucial in law enforcement investigations for identifying criminal activity in thousands of photos submitted by bystanders in a crowded area where a crime has occurred. Self-driving cars will also benefit from image recognition through the use of 360-degree camera technology.
Natural language processing
Neural networks, a central component of deep learning, have been used to process and analyze written text for many years. A specialization of text mining, this technique can be used to discover patterns in customer complaints, physician notes or news reports, to name a few.
Recommendation systems
Amazon and Netflix have popularized the notion of a recommendation system with a good chance of knowing what you might be interested in next, based on past behavior. Deep learning can be used to enhance recommendations in complex environments such as music interests or clothing preferences across multiple platforms.